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Edge-Based Color Constancy
Joost van de Weijer, Theo Gevers, and Arjan Gijsenij

Abstract—Color constancy is the ability to measure colors of
objects independent of the color of the light source. A well-known
color constancy method is based on the gray-world assumption
which assumes that the average reflectance of surfaces in the world
is achromatic. In this paper, we propose a new hypothesis for color
constancy namely the gray-edge hypothesis, which assumes that
the average edge difference in a scene is achromatic. Based on
this hypothesis, we propose an algorithm for color constancy.
Contrary to existing color constancy algorithms, which are com-
puted from the zero-order structure of images, our method is
based on the derivative structure of images. Furthermore, we pro-
pose a framework which unifies a variety of known (gray-world,
max-RGB, Minkowski norm) and the newly proposed gray-edge
and higher order gray-edge algorithms. The quality of the various
instantiations of the framework is tested and compared to the
state-of-the-art color constancy methods on two large data sets of
images recording objects under a large number of different light
sources. The experiments show that the proposed color constancy
algorithms obtain comparable results as the state-of-the-art color
constancy methods with the merit of being computationally more
efficient.

Index Terms—Color constancy, object recognition, photometric
invariance.

I. INTRODUCTION

COLOR constancy is the ability to recognize colors of ob-
jects independent of the color of the light source [1]. Ob-

taining color constancy is of importance for many computer vi-
sion applications, such as image retrieval, image classification,
color object recognition, and object tracking [2]–[4].

Approaches to this problem can be divided into two groups.
For the first group, the aim is to represent images by features
which are invariant with respect to the light source, for example
within the context of image retrieval. Such invariant represen-
tation have been proposed by Funt and Finlayson [5], Gevers
and Smeulders [2], Geusebroek et al. [6], and Van de Weijer and
Schmid [7]. For these methods, the actual estimation of the light
source is not necessary. For the second group of approaches, the
aim is to correct images for deviations from a canonical light
source. Contrary to methods in the first group, solutions to this
problem do estimate the color of the light source, be it explicitly
or implicitly. Methods, either propose a light source estimation,
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after which the image is corrected [8]–[11], or they directly es-
timate the color corrected image [1], [12], after which the light
source can be derived. If desired, illuminant invariant features
can subsequently be derived from the corrected image. In this
paper, we look at color constancy approaches of the second
group, i.e., methods from which a light source corrected image
can be computed.

One of the most successful color constancy methods is gamut
mapping proposed by Forsyth [1]. The method is based on the
observation that only a limited set of RGB values can be ob-
served under a given illuminant. The set of all possible RGB
values for the canonical illuminant, typically a white illuminant,
is called the canonical gamut. This canonical gamut is proven
to be a convex hull in RGB space. The algorithm computes
what transformations map an observed gamut into the canon-
ical gamut. From these transformations, the illuminant color is
derived. The gamut mapping algorithm provides among the best
results in color constancy experiments [3]. Finlayson et al. [12]
improve the gamut mapping algorithm by restricting the trans-
formations to be plausible, meaning that only illuminants are
allowed which correspond to existing illuminants. This adapta-
tion of the gamut algorithm, called GCIE for gamut constrained
illumination estimation, was shown to outperform the standard
gamut algorithm. Further approaches to color constancy include
probabilistic approaches [10] and learning-based methods [11].
A framework which unifies multiple color constancy algorithms
together is presented by Finlayson and Hordley [9]. They pro-
pose to estimate the illuminant from the correlation of the image
data, and the prior knowledge about which colors appear under
a certain light.

Although the above-described algorithms arrive at reason-
able color constancy accuracy, a drawback is that they are based
on complex algorithms and all require an image data set with
known light sources for calibration. In this paper, we will focus
on color constancy based on less complex color constancy
algorithms. To this end, fast algorithms are considered which
are based on low-level image features, such as max-RGB and
gray-world. Max-RGB is a simple and fast color constancy
algorithm which estimates the light source color from the max-
imum response of the different color channels [13]. Another
well-known simple color constancy method is based on the
gray-world hypothesis [8], which assumes that the average
reflectance in the scene is achromatic. If the images under eval-
uation are part of a coherent image data base, Gershon et al. [14]
showed that assuming the average of a scene to be equal to the
average reflectance of the database, improves the results over
the standard gray-world method. As an example, they mention
forest pictures full of green colors. In this case, most color
constancy methods will predict light sources biased towards the
green color. The database-compensated gray-world algorithm
resolves this problem. These low-level methods are widely in
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use, even in digital consumer cameras, due to their very low
computational costs, i.e., taking the maximum (max-RGB) or
average pixel values (gray-world).

Low-level approaches regained further interest recently
after Finlayson and Trezzi [15] showed that only with minor
adaptations results are obtained which are similar to those
of complex color constancy algorithms. In fact, they showed
that the max-RGB method and the gray-world method can
be interpreted as the same algorithm applied with different
instantiations of the error function. The max-RGB method is
shown to be equal to applying the Minkowski norm and
gray-world is equal to using the norm. They further show
that the best color constancy results are obtained with the

norm. Although these simple color constancy algorithms
are slightly outperformed by more elaborate methods, e.g.,
gamut mapping, they perform surprisingly well while they are
conceptually simpler (for an extensive evaluation of multiple
color constancy methods, see [3], [15], and [16]).

In this paper, we pursue this line of color constancy based
on low-level image features. First, we propose the gray-edge
hypothesis, which assumes that the average edge difference
in the scene is achromatic. The method is based on the ob-
servation that the distribution of color derivatives exhibits the
largest variation in the light source direction. The Minkowski
norm of these derivatives is used to approximate this direction.
The method is further extended to also include higher order
derivatives. To our knowledge, this is the first work in which
color constancy based on image derivatives is pursued. Finally,
we propose a new framework of color constancy based on
low-level image features which includes the known algorithms
(gray-world, max-RGB, shades of gray) and the newly pro-
posed gray-edge and higher order gray-edge algorithms.

This paper is organized as follows. In Section II, color con-
stancy based on the gray-world and the max-RGB hypothesis is
discussed. In Section III, we propose the gray-edge hypothesis,
which estimates the illuminant color based on the distribution
of the color derivatives. We further extend the color constancy
framework of Finlayson and Trezzi [15] to also include color
constancy methods derived from the gray-edge hypothesis. We
further extend it with a parameter to regulate the amount of
local averaging. Section IV, contains experiments on two large
databases of images. Section V contains a discussion of results
and indications for future research. Section VI finishes with con-
cluding remarks.

II. GRAY-WORLD HYPOTHESIS

The image values, , for a Lambertian surface
are dependent on the light source , where is the wave-
length, the surface reflectance and the camera sensitivity
functions

(1)

where is the visible spectrum and bold fonts are applied for
vectors. We assume that the scene is illuminated by a single light
source. The goal of color constancy is to estimate the light

source color , or its projection on the RGB-kernels

(2)

given the image values , where is the spatial coordinate in
the image. The task of color constancy is not attainable without
further assumptions.

Buchsbaum [8] proposes the gray-world hypothesis which
assumes that the average reflectance in a scene is achromatic.
In the original work, the hypothesis is used to derive that the
average reflectance for the short-wave, middle-wave and long-
wave regions is equal. Here, we employ a stronger definition of
the achromatic reflectance of a scene (as also used in [15])

(3)

which avoids to make further assumptions. Buchsbaum [8], for
example, needed to make further assumptions on the basis func-
tions for the camera sensitivities, the surface reflectances, and
the light source spectra. The constant is between 0 for no re-
flectance (black) and 1 for total reflectance (white) of the inci-
dent light, and the integral is over the domain of the scene. For
such a scene with achromatic reflectance, it holds that the re-
flected color is equal to the color of the light source, since

(4)

(5)

(6)

where we applied the theorem of Fubini to exchange the order
of integration. The normalized light source color is computed
with .

Another popular color constancy method is called max-RGB
[17]. It is based on the assumption that the reflectance which is
achieved for each of the three channels is equal

(7)

where the operation is executed on the separate channels

(8)

This method is sometimes explained as being derived from the
white-patch hypothesis. Since a white patch reflects all the in-
cident light, its position in the image can be found by searching
for the maximum RGB values. It should be noted, however, that
the max-RGB methods does not require the maxima of the sep-
arate channels to be on the same location; hence, it also ob-
tains correct illuminant estimation results when the maximum
reflectance is equal for the three channels.

Recently, Finlayson and Trezzi [15] showed that the gray-
world and the max-RGB algorithm are two different instanti-
ations of a more general color constancy algorithm based on the
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Minkowski norm. Their method is called shades of gray and is
computed by

(9)

For , the equation is equal to the gray-world assumption.
For , it is equal to color constancy by max-RGB. They
investigated the performance of the illuminant estimation as a
function of the Minkowski norm and found that the best results
are obtained with a Minkowski norm with .

A similar approach has been proposed by Barnard [18] to
select the appropriate transformation from the feasible set of
transformations computed with Gamut mapping method. In the
original work, Forsyth [1] proposed to take the transformation
belonging to the gamut with the maximum volume. Instead,
Barnard [18] considered various exponentials of the geometric
mean of the transformation vector to select the best transforma-
tion from the feasible set. He showed that by varying the expo-
nential, the selection criterion changes from taking the average
over all transformation to the maximum volume heuristic. Like
in the case of the shades of gray method, intermediate exponen-
tials were shown to obtain better results.

As a final extension of the gray-world algorithm, we con-
sider local averaging. The norm computation, as given by (9),
is a global averaging operation, which ignores the important
local correlation between pixels. This local correlation can be
used to reduce the influence of noise. Local smoothing as a
preprocessing step was proven to be beneficial for color con-
stancy algorithms, as discussed in Barnard’s study [3]. To ex-
ploit this local correlation, we introduce a local smoothing with
a Gaussian filter, , with standard deviation

(10)

where .

III. GRAY-EDGE HYPOTHESIS

As an alternative to the gray-world hypothesis, we propose
the gray-edge hypothesis: the average of the reflectance differ-
ences in a scene is achromatic

(11)

The subscript indicates the spatial derivative at scale . With
the gray-edge assumption, the light source color can be com-
puted from the average color derivative in the image given by

(12)

(13)

(14)

where . The gray-
edge hypothesis originates from the observation that the color

derivative distribution of images forms a relatively regular, ellip-
soid-like shape, of which the long axis coincides with the light
source color [20]. In Fig. 1, the color derivative distribution is
depicted for three images. The color derivatives are rotated to
the opponent color space as follows:

(15)

In the opponent color space, coincides with the white light
direction. For the scene under white light (the leftmost picture),
the distribution of the derivatives are centered along the
i.e., the white-light axis. Once we change the color of the light
source, as in the second and third picture, the distribution of the
color derivatives no longer align with the white-light axis. In
other words, color constancy based on the gray-edge assump-
tion can be interpreted as skewing the color derivative distribu-
tion such that the average derivative is in the orientation.

Similar to the gray-world based color constancy, the
gray-edge hypothesis can also be adapted to incorporate the
Minkowski norm

(16)

Color constancy based on this equation assumes that the th
Minkowski norm of the derivative of the reflectance in a scene
is achromatic. We distinguish two special cases. For , the
illuminant is derived by a normal averaging operation over the
derivatives of the channels. For , the illuminant is com-
puted from the maximum derivative in the scene. The resem-
blance between the color constancy derivation from the gray-
world and gray-edge hypothesis is apparent. Both methods can
be combined in a single framework of color constancy methods
based on low-level image features derived from the following
general hypothesis:

(17)

The division by has been incorporated into the constant
. Next to the already discussed hypotheses (gray-world, max-

RGB, Minkowski norm, and the newly proposed gray-edge), it
is obvious that this framework also includes higher order-based
color constancy. High-order derivatives have correspondences
with the center-surround mechanism of the human eyes for color
constancy such as exploited in the well-known center-surround
retinex algorithm [21]. The influence of the color intensities
could be weighted according to their distance to the center of the
receptive field generally calculated by a difference of Gaussian
functions.

The illuminant estimation of (17) describes a framework
for low-level based illuminant estimation. This framework
produces different estimations for the illuminant color based
on three variables.

1) The order of the image structure is the parameter deter-
mining if the method is a gray-world or a gray-edge al-
gorithm. The gray-world methods are based on the RGB
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Fig. 1. Three acquisitions of the same scene under different light sources [19]. In the bottom row, the color derivative distributions are shown, where the axes are
the opponent color derivatives and the surfaces indicate derivative values with equal occurrence and darker surfaces indicating a more dense distribution. Note the
shift of the orientation of the distribution of the derivatives with the changing of the light source.

TABLE I
OVERVIEW OF THE DIFFERENT ILLUMINANT ESTIMATIONS METHODS TOGETHER WITH THEIR

HYPOTHESES. THESE ILLUMINANT ESTIMATIONS ARE ALL INSTANTIATIONS OF (17)

values, whereas the gray-edge methods are based on the
spatial derivatives of order . In this paper, we will investi-
gate higher order-based color constancy up to order .

2) The Minkowski norm which determines the relative
weights of the multiple measurements from which the
final illuminant color is estimated. A high Minkowski
norm emphasizes larger measurements whereas a low
Minkowski norm equally distributes weights among the
measurements.

3) The scale of the local measurements as denoted by . For
first- or higher order estimation, this local scale is com-
bined with the differentiation operation computed with the
Gaussian derivative. For zero-order gray-world methods,
this local scale is imposed by a Gaussian smoothing oper-
ation.

An overview of the instantiations of the illuminant estimation
given by the framework of (17), which are considered in this
paper, is given in Table I.

An advantage of the color constancy methods based on (17)
is that they are all based on low computational demanding op-
erations. In fact, the th Minkowski norm of (smoothed) RGB
values or derivatives can be computed extremely fast (even real-
time on dedicated hardware). Furthermore, the method does not
require an image database taken under a known light source for
calibration as is necessary for more complex color constancy
methods such as color gamut mapping, and color by correlation
[1], [15].

IV. EXPERIMENTS

In the previous section, a general formulation for color illu-
minant estimation has been proposed based on low-level image
features. In this section, the performance is tested for various
parameter settings on a set of colorful objects in a controlled
indoor setting, and on a real-world data set containing mainly
outdoor scenes. For both data sets, the illuminant color of the
scene is provided as additional information (i.e., ground-truth).
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Fig. 2. Examples of the images in data set [19].

For evaluation, the angular error between the estimated light
source and the actual light source is used as an error mea-
sure

(18)

where the indicates a normalized vector. For the three data
sets tested here, we report the median angular error, which is
considered appropriate to assess the performance of color con-
stancy algorithms [22].

A. Controlled Indoor Image Set

First, the proposed algorithms are tested on a large data set
of colorful objects under different light sources [19]. The set
consists of images taken under 11 varying light sources of 30
different scenes containing both matte and specular objects (see
examples in Fig. 2). Several images where found to be unusable,
resulting in a data set of 321 images. Results of other color con-
stancy algorithms on this standard data set are available in [3],
[12], [15], and [22].

In Table II, the results of multiple methods are summarized.
Let us first consider the results obtained by the gray-world
and its performance as a function of the Minkowski norm and
local smoothing. Both parameters significantly improve the
performance. For the zero-order instantiation, only varying the
Minkowski norm reduces the error from 7.0 for gray-world, to
3.7 for a Minkowski norm equal to 7. A further increase in per-
formance of 15%, to an error of 3.2 , is obtained by combining
a simple local smoothing with and a Minkowski norm
of 11 (indicated by ). The illuminant estimations based
on the gray-edge hypothesis, both the first and second-order,
exhibit similar behavior. Again, a significant drop in the error is
obtained by an appropriate choice of the Minkowski norm and
local smoothing. The best results, an error of 2.7 , is obtained
with the second-order gray-edge method.

In Fig. 3, the median error is given as a function of the
Minkowski norm and local smoothing for the indoor image set.
These figures show that a small local scale or a low Minkowski
norm perform significantly less. The performance increases by
augmenting the Minkowski norm and the local scale. The per-
formance quickly levels off to a plateau where the performance
changes little. In Table III, we have indicated for which regions
of parameter settings a comparable performance, i.e., within
10% of the the optimal, is obtained.

Results of more complex color constancy methods, such as
gamut mapping, neural network algorithm, and color-by-corre-
lation, have been reported in literature for the images in group A
[3], [12], [22]. These results have been also included in Table II.
The more complex algorithms obtained comparable results to
the ones we reported. Only the CGIE algorithms obtains better

TABLE II
MEDIAN ANGULAR ERROR (DEGREES) ON INDOOR IMAGE

DATA SET FOR VARIOUS COLOR CONSTANCY METHODS

TABLE III
PARAMETER SETTINGS FOR WHICH THE PERFORMANCE REMAINS

WITHIN 10% OF OPTIMAL PERFORMANCE AS GIVEN IN TABLE II

results with an error of 1.3 . However, it should be noted that
this algorithm uses the 11 illuminants which where used during
the image acquisition as prior knowledge. If this prior knowl-
edge is put aside, the performance drops to an error of 2.6
(GCIE Version 3, 87 lights).

B. Real-World Image Set

Next, the color constancy algorithms are tested on a database
presented by Ciurea and Funt [23]. The database contains 11 000
images extracted from 2 h of digital video. Both indoor and out-
door scenes from a wide variety of locations are represented (see
Fig. 5). A small gray sphere was mounted onto the video camera,
appearing for all the images in the right bottom corner of the im-
ages. The sphere is exploited to estimate the illuminant color in
the scene. This color illuminant estimation is available with the
database and is used as a ground truth in this experiment. The
original images were extracted from 15 different film clips taken
at different locations. Because of the high correlation between
the images in the database, the experiments are performed on
a subset of 150 randomly chosen images containing ten images
from each of the 15 video clips. The pixels in the right bottom
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Fig. 3. Median angular error of the general gray-world, first-order, and second-order gray-edge method as a function of the Minkowski norm and local smoothing.
The angular error axis is inverted for visualization purposes.

Fig. 4. Examples of the images from the real-world data set [23].

Fig. 5. Color constancy results of gray-world, general gray-world, gray-edge, and second-order gray-edge on real-world data set. The angular error is indicated
in the right bottom corner. The first row depicts a failure of the edge-based approaches, whereas the gray-world methods give acceptable results. The second and
third rows show examples where the gray-world methods fail and the gray-edge methods obtain superior results.

corner, which contains the gray sphere, are excluded from the
color constancy computation.

The results on the real-world data set are summarized in
Table IV. Again, an appropriate choice of the parameters
significantly improves the results. Interestingly, the gray-edge
performs best on this set of real-world images. It improves
the color constancy results with about 40% compared to the
Max-RGB.

In Fig. 5, corrected images based on gray-world and gray-
edge methods are given for the real-world set. We applied the
optimal parameters as given in Table IV. We often found a high
correlation between the two edge-based methods. However, the
estimations based on the gray-world and the two edge-based
methods differ often. For example, in row one of Fig. 5, the
edge-based methods fail and their estimation of the light source
is too blue, whereas the general gray-world obtains acceptable
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TABLE IV
MEDIAN ANGULAR ERROR (DEGREES) FOR VARIOUS COLOR

CONSTANCY METHODS ON REAL-WORLD IMAGE SET

results. The second row shows an example where the large blue
sky results in an light source estimation which is much too
blue for the gray-world methods. The edge-based methods ob-
tain better results for this image. The last row shows an ex-
ample where the second-order gray-edge method outperforms
the other methods.

V. DISCUSSION

In the previous experiments, we have demonstrated that the
proposed color constancy algorithms obtain comparable results
to more complex color constancy algorithms. However, the op-
timal parameter setting vary for the different data sets. Impor-
tant to note is the difference in the Minkowski norm for the
edge-based methods. On the real-world set, a Minkowski norm
of one is optimal whereas for the indoor sets a higher Minkowski
norm between 6 and 15 is optimal. This is probably caused
by the black background present in the indoor scenes. For the
edge-based methods, the illumination estimate is computed by
averaging the edge differences in a scene. Depending on the
Minkowski norm, more weight is given to prominent edges. For
the edge-based methods, the fact that the background in the im-
ages of sets A and B is black, significantly increases the chance
that the highest edge in the image is black-white. This explains
why a high Minkowski norm for these data sets is preferred. In
case of the real-world data, the chance that the highest edge-re-
sponse is caused by a black-white edge is smaller and conse-
quently it is advantageous to take multiple measurements in
the image into account. This is reflected in a lower Minkowski
norm.

The proposed gray-edge algorithm can be obtained from the
gray-world algorithm by simply exchanging the RGB values for
the spatial image derivatives. The zero-order image structure,
which provides the building stones for the gray-world method,
is replaced by the higher order image structure. In the case of
the gray world, the change to higher orders proved beneficial
and the gray-edge methods outperform the gray-world methods.
To our knowledge this paper is the first to propose color con-
stancy derived from image derivatives. Methods such as Gamut
mapping, neural network based color constancy and color by
correlation are all based on the zero-order structure of images.
However, there is no restriction which prevents them from using
the higher order structure of images, and it would be interesting
to see how these methods performed once based on the deriva-
tives of images, or based on both zero-order and higher order
structure of images.

Further work also includes searching for more elaborate ways
to combine the low-level building blocks proposed in this paper.
Can we find ways to decide what method is expected to perform
best on a particular image? Furthermore, we believe that auto-
matic estimation of the parameters separately per image, instead
of for the whole data set, will improve the color constancy re-
sults, possibly within a learning context, such as proposed by
Cardei et al. [11]. Another interesting research direction would
be to constrain the possible illuminants to be physically feasible
as is done in [12].

VI. CONCLUSION

In this paper, we have investigated edge-based color con-
stancy. The method is derived from the gray-edge hypothesis
which assumes that the average edge difference in a scene is
achromatic. In contrast to existing methods, which are based on
zero-order structure of the image, our method is based on the
higher order structure of images. Furthermore, we introduce a
framework of color constancy based on low-level image features
which includes the known algorithms (gray-world, max-RGB,
Minkowski norm) as well as the newly proposed gray-edge and
higher order gray-edge algorithms. The quality of the various in-
stantiations of the framework is tested on two large data sets of
images recording objects under a large number of different light
sources. The experimental results show that the newly proposed
simple color constancy algorithms obtain similar results as more
complex state-of-the-art color constancy methods. Furthermore,
the results show that color constancy based on the gray-edge
hypothesis obtains better results than those obtained with the
gray-world method for real-world images.
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